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(a) In this problem we fit a Bayesian Poisson GLM with logarithmic link log(µi) = β1 +β2xi
to our fabric dataset. Using a Metropolis Hastings algorithm with flat priors, we gener-
ate posterior samples for β1 and β2. Ten thousand iterations are performed, and the first
five thousand are thrown away. Finally, candidate βis are generated as samples from a
multivariate normal distribution with covariancen matrix taken from the MLE estimates
that the optim function in R produces. Plots of posterior samples are included below. In
the histograms, blue lines correspond to the mean of our posterior samples, green lines
correspond to MLE estimates, and red lines correspond to 95 percent confidence intervals.
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Using these posterior estimates, we can generate point and interval estimates for the
response mean. Those estimates are plotted below. with the blue points corresonding
to the data, the black line the mean, and the red lines 95 percent confidence regions.
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Finally, we can take our posterior estimates of β1 and β2 and, for each fabric length
in the data, generate a distribution of expected average numbers of faults. For each of
these mean estimates, we then generate a random deviate from a poisson distribution.
These random deviates are samples from the posterior predictive distribution. Subtract-
ing the actual number of faults from this distribution gives us a distribution of posterior
predictive residuals. We plot the 95 percent confidence regions for each data point in the
plot below. Red indicates that zero is included in the region, while blue indicates the
opposite. We note that six out of thirty two data points appear to be inconsistent with
the model, which is much higher than one or two we might hope for with 95 percent
confidence regions.
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(b) In this problem, we explore a Bayesian Hierarchical Poisson GLM.

(i) Here we develop expressions for E(Yi|β1, β2, λ) and V ar(Yi|β1, β2, λ) and compare
them to the expressions in part (a).

E(Yi|β1, β2, λ) = Eµi(E(Yi|µi))
= Eµi(µi)

= γi = exp(β1 + β2xi)

V ar(Yi|β1, β2, λ) = V ar(E(Yi|µi)) + E(V ar(Yi|µi))
= V ar(µi) + E(µi, )

=
γ2i
λ

+ γi = exp(β1 + β2xi) +
exp(β1 + β2xi)

2

λ

Under the non-hierarchical model, E(Yi|β1, β2) = exp(β1 + β2xi), which is exactly
the same. However, the variance is defined to be V ar(Yi|β1, β2) = exp(β1 + β2xi)
which we note is less than or equal to the variance of the hierarchical model.
The variance of the hierarchical model is equal to the variance of the standard
model only when λ → ∞ which is the limiting case discussed in class, where the
hierarchical GLM collapses to the standard GLM.

(ii) For our MCMC approach we use a Gibbs sampler with one normal update step
for the µi and Metropolis Hastings for λ and β updates. The specific distributions
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that we use to compute the full posterior are detailed below.

yi|µi ∼ Pois(µi)

µi|γi, λ ∼ Gamma(λ, λγ−1)

p(λ) =
1

(1 + λ)2

p(β) ∝ 1

log(γi) = β1 + β2xi

From the information above we can compute the full posterior and the correspond-
ing full conditionals. This process is detailed below.

p(β, λ, µ|Y ) ∝ p(Y |β, λ, µ)p(β, λ, µ)

= p(Y |β, λ, µ)p(µ|λ, β)p(λ)p(β)

=

[ n∏
i=1

Pois(yi|µi)
][ n∏

i=1

Gamma(µi|λ,
λ

γi
)

]
1

(1 + λ)2
∗ 1

µi|· ∼ Gamma

(
µi|yi + λ, 1 +

λ

exp(β1 + β2xi)

)
log(p(log(λ)|·)) ∝

n∑
i=1

[
λlog

(
λ

γi

)
− logΓ(λ) + (λ− 1)log(µi)− λµiγ−1

i

]
− 2log(1 + λ) + log(λ)

log(p(β|·)) ∝
n∑
i=1

[
− λ(β1 + β2xi)−

λµi
exp(β1 + β2xi)

]
Using the above full conditionals, we implement a Gibbs Sampler. The µi sampling
steps are easy, but for the MH steps, we have to generate candidates. MH requires
the proposal distribution to be symmetric, but λ > 0, so we make a change of vari-
able to log(λ) so we can sample from a normal distribution, which is symmetric.
We then exponentiate our log(λ) sample to get a lambda sample.
We generate beta candidates by sampling from a multivariate normal with diagonal
covariance matrix. Under these proposal approaches, I ran the Gibbs Sampler for
300,000 iterations, and noted that it generally seemed to be converging to ballpark
values, but based on a time series plot of the samples of say β1, didn’t seem to be
converging to a particular value. To try and improve the Gibbs Sampler perfor-
mance, I took the mean λ and µi’s that were generated, and treated these as close
enough to MLE values. I then maximized log(p(β|·)) using these mean estimates
as inputs to the non β parameters of the log likelihood. The optim function in R
gives a numerically approximated hessian, which I multiplied by -1 and took the
inverse of to get a potentially better covariance matrix for candidate generation in
the β MH step. Using this approach, I then reran the Gibbs sampler with fewer
iterations to get the following posterior plots of β1, β2 and λ.
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(iii) Next, we derive an expression for the posterior predictive distribution of a new
unobserved response y0 based on a new x0.

p(y0|x0, data) =

∫
Pois(y0|µ0)Gamma(µ0|λ, λγ−1

0 )p(β1, β2, λ|y)dβdλdµ0

=

∫
e−µ0µy00
y0!

(λγ−1
0 )λ

Γ(λ)
µλ−1
0 exp(−λγ−1

0 µ0)p(β1, β2, λ|y)dµ0dβdλ

=

∫
(λγ−1

0 )λ

Γ(λ)y0!

[ ∫
µy0+λ−1
0 exp(−(λγ−1

0 + 1)µ0)dµ0

]
p(β1, β2, λ|y)dβdλ

=

∫
(λγ−1

0 )λ

Γ(λ)y0!

Γ(y0 + λ)

(λγ−1
0 + 1)y0+λ

p(β1, β2, λ|y)dβdλ

=

∫
Γ(y0 + λ)

Γ(y0 − 1)Γ(λ)

(
λ

λ+ γ0

)λ(
γ0

λ+ γ0

)y0
p(β1, β2, λ|y)dβdλ

=

∫
NB

(
y0|λ,

γ0
γ0 + λ

)
p(β1, β2, λ|y)dβdλ

where γ0 = exp(β1 + β2x0)

First, this distribution has no analytic form, but we can sample from it using
our posterior samples. In particular, we can generate samples from the posterior
predictive distribution by taking our posterior samples of β1, β2 and λ and using
those to sample directly from a negative binomial distribution to get samples of y0.

(iv) Next we use these posterior distributions to generate point and interval estimates
for the response mean as a function of fabric length. As E(Yi|γi) = γi in this hier-
archical GLM, the red lines correspond to a 95 percent confidence region of the γi,
which we defined earlier as γi = exp(β1 + β2xi). That plot is included below, and
we note that the mean curve is just about the same, but the confidence regions are
substantially wider than the regions for the standard GLM.
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(v) Next we do some posterior predictive model checking. This time however, the µi
are sampled for every MCMC iteration, rather than just β1, β2. So, in order to get
posterior predictive replicate samples, we look at the following integral and note
that we can generate posterior predictive samples of y by taking random poisson
samples with mean µi, for each of the MCMC µi samples for data point i.

p(ŷ|y) =

∫
Poisson(ŷ|µi)p(µi|y)dµi

This approach gives the following bayesian residual plot. Note that this time, every
single observation has 0 as a possible value suggesting that this model is matching
the data better than the standard GLM.
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(vi) Next we consider the sensitivity of our posterior to prior choice. In particular, we
consider the following proper priors. Powers p ≤ 1 aren’t proper.

p(λ) =
1

(1 + λ)p

p ∈ {1.01, 2, 10}
p(λ) = Gamma(.01, .01)

These have plots below. We note that small p gives a lot of weight to large lambda
values, while the gamma distribution doesn’t have as much density for those values.
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We evaluate posterior sensitivity to prior specification first by looking at what
the different priors do to posterior lambda estimates. The beta estimates remained
fairly similar regardless of which lambda prior was used.
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lambda, p = 2
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Clearly, we see that lambda is highly affected by prior specification. To see how the
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different priors on lambda affect actual predictions of the yi, we compute posterior
predictive distributions based on new x0’s over a grid. That approach yields the
following plot.
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We note that all priors produce posterior predictive distributions with relatively
similar means. However the gamma, p = 2, and p = 1.01 produce posterior pre-
dictive distributions with similar spreads as well, while the p = 10 prior produces
dramatically different confidence regions. This makes sense, as that prior enforces
small lambdas. Lambda is a precision parameter, so with small lambda, we expect
a model with that can accomodate a lot of overdispersion. This would cause the
large confidence regions we see in the posterior predictive plot.

(c) Looking at our results from parts (a) and (b), it’s clear that the hierarchical poisson
model better models the data. In particular, we note that the 95 percent confidence
regions of the posterior predictive bayesian residuals from the hierarchical GLM include
zero for every replicate observation. In contrast, 6/32 observations on the standard GLM
don’t include zero. To better formalize the idea that the hierarchical model fits better,
we compute the Gelfand and Ghosh predictive posterior loss criterion for both models,
as well as for hierarchical models with different priors on λ. The Gelfand and Ghosh
criteria is defined as follows, where zl are replicates of the data.

µl = E(zl|x)

σ2
l = var(zl|x)

G =
n∑
l=1

(µl − xl)2

P =
n∑
l=1

σ2
l

D = G+ P
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Model G P D
Standard GLM 650.3489 302.8733 953.2222
Hierarchical GLM 120.0659 456.2206 576.2865

In order to get posterior samples of the zl in the hierarchical case, we generate samples
from poisson distributions with means equal to our posterior mean samples. In the
standard glm, we generate samples from a poisson distribution with µ = exp(β1 + β2x)
where x is some replicate data point, and the βi are posterior samples. We find that
the hierarchical model fits the data much better, according to the Gelfand and Ghosh
criterion.

Different priors on λ drop the Gelfand and Ghosh criterion from around 576 to around
540, which is a small drop relative to the jump from the standard GLM. Because the
criterion is relatively unaffected by prior choice, I didn’t include the actual G, P and D
values in the table above.
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