CMPS 242: HW3

Mark Beers
December 31, 2018

1. Linear Regression

(a) MLE estimation of w, . Here we maximize the log likelihood.

pltlz,w, ) = N(tly(z,w), 57)

n o ) 2
WyvLE, BMLE = argmax logH W ( (ti ggjz{ w)) )

= argr?in —n log(B) + 52(751' — (i, w))?

Taking derivatives with respect to wq, wy, we, w3, and setting equal to zero, we
note that § falls out of the equation in each case, giving us 4 equations and four
unknowns. This means that our MLE estimates for w won’t depend on the variance
B! and they will take the standard form,

X =[1,2,2% 2%
w=(XTX)" X"t

Further, taking the derivative of the log likelihood with respect to § yields the
following.

885 (argmln —n log(B) + an:(tz - y<fﬂi,w))2) =0
i—1

— =3t y(aw))

BuLE P

n

-1 1 2

= Bure = o ;(tz Y(xi, wyrE))
Using this approach yields the following estimates for w, 8 for 100, 1000, 10000
test points. We note that wy, ws, w3 remain relatively constant while the intercept
seems to get closer to the true value of .2. We also note that our estimate for the
variance seems to improve once we get more than 100 training examples. Inter-
estingly, if we use the optimize module in scipy with method BFGS to perform

1



n training points | wy wy Wo ws B1

100 0.2401381 | 2.0000394 | 0.9999990 | 2.9999995 | 0.8202118
1000 0.1834306 | 1.9981898 | 0.9999978 | 3.0000003 | 1.002905
10000 0.1903286 | 2.0004489 | 0.9999998 | 2.9999999 | 1.014826

(b)

this same task, optimizing over 5 and w simultaneously, we get very similar results
for w, but f is computed to be around 3.35 in each case. I'm not certain why
this would be. Also we note that accurate convergence of our minimization is very
dependent on having a close starting value.

Repeat part a but with a fifth degree polynomial rather than a 3rd degree polyno-
mial. This yields the following table of results using the mathematical approach
above. We see that the MLE correctly sets wy, ws to be very nearly 0.

n training points | wy wy Woy ws Wy ws Bt

100 .2224 2.0089 | 1.0000 | 2.99999 | -7.5716e-09 | 3.9693e-10 0.7998198
1000 0.14827 | 1.9964 | 1.0000 | 3.0000 | -4.4164e-09 | -7.401052¢-11 | 1.000897
10000 19577 | 2.0012 | .99999 | 3.0000 | 6.5339e-10 | 3.3887e-11 1.014

This time with the scipy approach we see similar but more extreme results. In
particular, the coefficient estimates that we converge to seem even more dependent
on the point we initialize the solver at. Often it will set w4, ws to be small, but
our estimates for wg, wy, we, w3 can vary dramatically.

Bayesian Linear Regression
In this problem we seek to maximize the following equation with respect to w and
alpha, where § = a = 1.

n 2
In p(w|t) = —g Z <ti - wT¢(:ci)) — %wTw + const.
i=1

From the book we note that the posterior distribution is as follows.

p(w[t) = N(w|my, Sy)
my = ﬁSN(I)Tt
Syt = al + 3o'd
— my = (I + ®'®) 10Tt
This equation will give us the MLE’s for w that we need. The results are sum-

marized in the following tables below. Some plots of the estimated curves are also
provided.




Training Examples | wy w1 Wa W3

100 0.2345511 | 1.9999760 | 0.9999999 | 2.9999995
1000 0.1830405 | 1.9981858 | 0.9999979 | 3.0000003
10000 0.1902861 | 2.0004486 | 0.9999999 | 2.9999999
True 0.2 2 1 3

Table 1: Cubic Polynomial Fit Coefficient Results

Third Degree Bayesian Linear Regression Fits

100
1000
10000
True

3e+06
!

2e+06

1e+06
!

/

xw100
0e+00
!

o

-3e+06 -2e+06 -1e+06

T T T T T
-100 -50 0 50 100

X.space

As we can see looking at the table of coefficients and at the plot of Third Degree
Bayesian Regression fits, the bayesian regression approach gives very accurate re-
sults, with all curves lining up almost identically. The fifth degree polynomial fits
worked fairly well also. Unfortunately however, I was unable to invert the matrix
(I +®7®) and so a numerical minimization approach had to be used. The results
from this approach are still graphically good, though we note in the table that
the coefficient estimates are much less exact than with the third degree bayesian

regression.
Training Examples | wy w1 Wo w3 Wy Wy
100 -2033.495 | -5.526 | 2.00095 | 3.004 -9.549e-5 | -3.5633e-7
1000 80.921 -8.63 | .9738 3.00479 | 2.156e-6 | -4.219e-7
10000 -6.157 -8.849 | 1.004 3.005 -4.489e-7 | -4.5357e-7
True 0.2 2 1 3 0 0

Table 2: Quintic Polynomial Fit Coefficient Results




Quintic Fit Results

3000000 4 —— 100 Training Examples
1000 Training Examples
—— 10000 Training Examples
2000000 —— True
1000000 -
0 -
—1000000 A
—2000000 A
—3000000 A
-100 -75 -50 -25 0 25 50 75 100

. Naive Bayes Text Classification

In this problem, we perform text classification with a Naive Bayes Classifier. We're
given 12 datasets, Enronl.ham, Enron2.ham, ... Enron6.ham, Enronl.spam, En-
ron2.spam, ..., Enron6.spam. We use Enronl through Enron) to train a classifier
to differentiate between ham and spam, and test on Enron6. We classify as ham if:

P(ham|data) > P(spam|data)
P(data|lham)P(ham)  P(data|spam)P(spam)

P(data) P(data)
— P(datalham)P(ham) > P(data|spam)P(spam)
1504
P(ham) = P045

15045 + 12669
P(spam) =1— P(ham)

—1=

P(datalham) = | | P(test example word n|ham)

S
Il
—

=

P(data|spam) = | | P(test example word n|spam)

S
Il
—

In the above equations N indicates the number of words in a given test email. Differ-
ent prior probabilities arising from different numbers of spam and ham emails in the
training set are accounted for in the above equations. For computational reasons, all
calculations are done on the log scale. Further, all computations are done without the
use of python packages like sklearn. Below we report accuracy results for versions with
and without laplace smoothing. Accuracy is measured as the proportion of emails in
the Enron6 dataset that are classified correctly.

As we can see in the table above, adding laplace smoothing dramatically improves
accuracy. This can in large part be explained by a large issue that arises when laplace



Smoothing | Ham Accuracy | Spam Accuracy | Total Accuracy
None 973/1500 3274/4499 4247/5999 ~ 0.708
Laplace 1431/1500 4465/4499 5896,/5999 ~ 0.983

Table 3: Naive Bayes Classifier Accuracy Results

smoothing isn’t included. Namely, if laplace smoothing isn’t implemented, we will in-
evitably encounter words in the test data that aren’t included in the training data. In
this situation the Niave Bayes classifier without laplace smoothing will set the proba-
bility of that particular word given a certain class to zero. After a log transformation,
we're left with a P(class|data) = —oo. If both class’s training sets don’t include a word
in the test email, then we're left with P(class Oldata) = P(class 1|data) = —oco. In
this situation, I assigned that email to the ham class with probability equal to the ham
prior. A more sophisticated approach involving ignoring the word not existent in the
training set would probably perform better. We also chose to not do anything special
with punctuation. It would be interesting to see if removing punctuation improved
the performance of the classifier. Below we include a list of the most discriminative
words based on the learned probabilities. In order to get this table, we compute the log
probability associated with each word for spam and ham, and then find the absolute
value of the difference between these two log probabilities. Sorting on this difference
gives us table four.

Word abs(log probability difference)
enron 10.411474

kaminski 7.968558

dynegy 7.958526

pills 7.898633
viagra 7.810160
ect 7.561901

computron | 7.483230

Table 4: Most Discriminative Words



