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1. Binary Response

(a) Here we assume x is given, so we don’t have to condition on x in the statement
P (Y = 1). We say that P (Y = 1) follows the logistic regression structure if
P (Y = 1) = Φ(xTβ).

P (Y = 1) = P (U1 > U0)

= P (a1 + b1x+ ε1 > a0 + b0x+ ε0)

= P ((a1 − a0) + (b1 − b0)x > ε0 − ε1)

= P

(
1√
2

[(a1 − a0) + (b1 − b0)x] >
1√
2

(ε0 − ε1)
)

ε =
1√
2

(ε0 − ε1) ∼ N(0, 1)

=⇒ P (Y = 1) = P

(
ε <

a1 − a0√
2

+
b1 − b0√

2
x

)
= Φ

(
a1 − a0√

2
+
b1 − b0√

2
x

)
= Φ(β0 + β1x)

=⇒ β0 =
a1 − a0√

2

β1 =
b1 − b0√

2

(b) Now rather than following standard normal distributions, ε1, ε0 follow the gumbel
distribution, with CDF F (εi) = exp(−exp(−εi)). The process of showing that this
satisfies the logistic regression model structure proceeds much the same way as
the normally distributed case. This time, we assume that P (Y = 1) satisfies the
logistic regression model structure if P (Y = 1) = F (xTβ) where F is the CDF of
the logistic distribution.

P (Y = 1) = P (U1 > U0)

= P ((a1 − a0) + (b1 − b0)x > ε0 − ε1)

Now the question is what’s the distribution of the difference of two Gumbel random
variables. Below we show that the difference is a standard logistic distribution by
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characterizing the distribution using the moment generating function.

E[et(ε0−ε1)] = E[etε0e−tε1 ]

= E[etε0 ]E[e−tε1 ] ε0, ε1 independent.

E[etε0 ] =

∫ ∞
−∞

etε0exp(−exp(−ε0))e−ε0dε0

=

∫ ∞
0

u(1−t)−1e−udu = Γ(1− t), u = e−x

E[e−tε1 ] =

∫ ∞
−∞

e−tε1exp(−exp(−ε1))e−ε1dε0

=

∫ ∞
0

u(1+t)−1e−udu = Γ(1 + t), u = e−x

E[etε0 ]E[e−tε1 ] = Γ(1 + t)Γ(1− t) =
Γ(1 + t)Γ(1− t)

Γ((1 + t) + (1− t))
= B(1 + t, 1− t)

So the moment generating function of the difference of two gumbel distributed
random variables is B(1 + t, 1 − t) where B is the beta function. Now we will
show that the MGF of a standard logistic random variable is exactly this using an
integral result from the beta function page on wikipedia.

MX(t) =

∫ ∞
−∞

e−x

(1 + e−x)2
etxdx

=

∫ ∞
0

u(1−t)−1

(1 + u)(1−t)+(1+t)
du u = e−x

= B(1− t, 1 + t) Wikipedia integral result

So the MGF of the difference of two standard gumbel distributed random variables
is equal to the MGF of a standard logistic distribution. By the uniqueness of the
MGF, ε0 − ε1 ∼ logistic(0, 1). So,

P (Y = 1) = P (U1 > U0)

= P ((a1 − a0) + (b1 − b0)x > ε0 − ε1)
= P (ε < (a1 − a0) + (b1 − b0)x), ε ∼ logistic(0, 1)

= F ((a1 − a0) + (b1 − b0)x), F is a logistic CDF

= F (β0 + β1x)

=⇒ β0 = a1 − a0
β1 = b1 − b0

2. Alligator Food Choice. Before we start part a, I include a histogram of length by food
preference. Normally I would use empirical proportions to empirically validate our pre-
dicted probabilities, but mi is one here, so empirical proportions don’t really apply. We
note that the largest alligators strongly prefer fish, and that small alligators like to eat
invertebrates. We hope to see this replicated in our predicted response probabilities,
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with long alligators having a high probability of preferring fish, and short alligators
having a high probability of preferring invertebrates.

Length by Food Preference
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(a) Here we focus on length as a single covariate to explain an alligator’s preference for
fish, invertebrates or other. We develop a Bayesian multinomial regression model,
using the Metropolis Hastings algorithm to obtain posterior samples of the desired
coefficients. Fish was used as the baseline category. In an effort to have uninforma-
tive priors, we use very dispersed, nearly flat independent normal priors for each
covariate, with mean 0 and standard deviation 100. Candidate parameter values
were generated from a multivariate normal. The corresponding variance covari-
ance matrix was given by the negative inverse of the hessian matrix that the optim
function applied to the log likelihood in R provides. Plots of the posterior sam-
ples are provided below. Posterior estimates are based on 10000 posterior samples,
with the first 5000 thrown away. Blue lines indicate the mean of the posterior sam-
ples, green lines indicate the MLE, red lines indicate 95 percent confidence regions.
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Using these posterior samples, we estimate response probabilities as a function of
length. These probabilities are calculated using the following equations for some
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given length x.

πI =
exp(αI + βIx)

1 + exp(αI + βIx) + exp(αO + βOx)

πO =
exp(αO + βOx)

1 + exp(αI + βIx) + exp(αO + βOx)

πF =
1

1 + exp(αI + βIx) + exp(αO + βOx)
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We note as expected that Fish are strongly preferred by large alligators and Inver-
tebrates are preferred by small alligators.

(b) Here we extend the model from part (a) to describe the effects of both length and
gender on food choice. Similar plots of posterior samples are again provided below.
MLEs were calculated, as before using the optim function in R with BFGS as the
method. This approach was more robust to different initial starting points than
the default Nelder Mead method which was interesting.

5



Intercept: Other

Time

In
te

rc
ep

t: 
O

th
er

0 5000 10000 15000

−
6

−
4

−
2

0
2

4

Intercept: Other

Mean =  −1.0114
Intercept: Other

F
re

qu
en

cy

−6 −4 −2 0 2 4

0
10

00
30

00

Coefficient: Other

Time

C
oe

ffi
ci

en
t: 

O
th

er

0 5000 10000 15000

−
2

−
1

0
1

2

Coefficient: Other

Mean =  −0.1156
Coefficient: Other

F
re

qu
en

cy

−2 −1 0 1 2

0
20

00
40

00

Intercept: Invertebrates

Time

In
te

rc
ep

t: 
In

ve
rt

eb
ra

te
s

0 5000 10000 15000

0
2

4
6

8
10

Intercept: Invertebrates

Mean =  5.0634
Intercept: Invertebrates

F
re

qu
en

cy

0 2 4 6 8 10 12

0
10

00
20

00
30

00

6



Coefficient: Invertebrates

Time

C
oe

ffi
ci

en
t: 

In
ve

rt
eb

ra
te

s

0 5000 10000 15000

−
8

−
6

−
4

−
2

Coefficient: Invertebrates

Mean =  −3.2837
Coefficient: Invertebrates

F
re

qu
en

cy

−8 −6 −4 −2

0
10

00
20

00
30

00

Coefficient: Invertebrate, Gender

Time

C
oe

ffi
ci

en
t: 

In
ve

rt
eb

ra
te

, G
en

de
r

0 5000 10000 15000

−
1

0
1

2
3

4

Coefficient: Invertebrate, Gender

Mean =  1.3239
Coefficient: Invertebrate, Gender

F
re

qu
en

cy

−1 0 1 2 3 4 5

0
10

00
30

00

Coefficient: Other, Gender

Time

C
oe

ffi
ci

en
t: 

O
th

er
, G

en
de

r

0 5000 10000 15000

−
3

−
2

−
1

0
1

2
3

Coefficient: Other, Gender

Mean =  −0.1418
Coefficient: Other, Gender

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
10

00
20

00
30

00

Using these posterior probabilities, we again compute length dependent response
probabilities, by gender.
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Again we note as expected that small alligators prefer invertebrates and large
alligators prefer fish. We note that in particular, small female alligators prefer
invertebrates, but large alligators, regardless of gender seem to prefer fish.

3. Developmental Toxicity.

(a) Below we go through an argument for why, in the case of continuation ratio logits,
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we can decompose our multinomial glm into two distinct Binomial GLMs.

Multinomial(y1, y2, y3|m,π1, π2, π3)

=
m!

y1!y2!(m− y1 − y2)!
πy11 π

y2
2 (1− π1 − π2)m−y1−y2

=
m!

y1!(m− y1)!
(m− y1)!

y2!(m− y1 − y2)!
πy11 (1− π1)m−y1

1

(1− π1)m−y1
πy22 (1− π1 − π2)m−y1−y2

=

(
m

y1

)
πy11 (1− π1)m−y1

(
m− y1
y2

)(
1− π1 − π2

1− π1

)m−y1−y2( π2
1− π1

)y2
=

(
m

y1

)
πy11 (1− π1)m−y1

(
m− y1
y2

)(
π3

π2 + π3

)m−y1−y2( π2
π2 + π3

)y2
= Bin(y1|m,

π1
π1 + π2 + π3

) Bin(y2|m− y1,
π2

π2 + π3
)

= Bin(y1|m, p1) Bin(y2|m− y1, p2)

p(y1|m,π1)p(y2|m,π1, π2) = exp

[
y1log

(
π1

1− π1

)
+mlog(1− π1) + log

(
m

y1

)
+

y2log(
π2

π2 + π3
) + (m− y1 − y2)log(

π3
π2 + π3

) + log

(
m− y1
y2

)]
= exp

[
y1log

(
π1

π2 + π3

)
+mlog(1− π1) + log

(
m

y1

)
+

y2log(
π2
π3

) + (m− y1)log(
π3

π2 + π3
) + log

(
m− y1
y2

)]
So, basically we established that the multinomial likelihood can be decomposed
into two binomial likelihoods. One of those likelihoods depends only on π1 and
the other depends only on π2 and π3 so, because there’s no overlap of the πi in
the glms, we can fit the two binomial glms separately. So, including indexes now,
we define the glm with the following components.

θ1i = g(µ1i) = log

(
π1(xi)

π2(xi) + π3(xi)

)
= α1 + β1xi

θ2i = g(µ2i) = log

(
π2(xi)

π3(xi)

)
= α2 + β2xi

Yi = (yi1, yi2, yi3)

π̂1(xi) =
exp(α1 + β1xi)

1 + exp(α1 + β1xi)

π̂2(xi) =
exp(α2 + β2xi)

(1 + exp(α1 + β1xi)(1 + exp(α2 + β2xi))

π̂3(xi) =
1

(1 + exp(α1 + β1xi)(1 + exp(α2 + β2xi))

So, because we can decompose the multinomial likelihood into a product of two
binomial likelihoods, one of which depends only on π1, and the other that depends
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only on π2, π3, that just so happen to take the form used for continuous ratio logits,
we can fully fit this model using two separate Binomial GLMs, which take the
forms given above.

(b) Now that we’ve established this particular model can be fit using two separate
binomial GLMs, we will obtain MLE estimates and corresponding standard errors
for α1, α2, β1, β2. MLE estimates and standard errors are obtained using the optim
function in R applied to the following log likelihoods.

LL1 = log

[ 5∏
i=1

Bin(y1i|mi, π1)

]
=

5∑
i=1

log

[
Bin(y1i|mi, π1)

]

LL2 = log

[ 5∏
i=1

Bin(y2i|mi − y1i,
π2

π2 + π3
)

]
=

5∑
i=1

log

[
Bin(y2i|mi − y1i,

π2
π2 + π3

)

]

To get standard errors, we use the asymptotic result that β̂ is asymptotically
distributed as Np(β, J

−1(β̂)), where J is the observed fisher information matrix
evaluated at the MLEs. From the optim function in R, we can get the appro-
priate hessian, which we multiply by -1, invert, and then take the square root of
the diagonal elements of to get standard errors for the αi, βi. Those results are
provided in the table below.

Coefficient MLE SE
α1 -3.248202248 0.1588523248
β1 0.006389104 0.0004454399
α2 -5.70135555 0.324514723
β2 0.01737291 0.001185534

We will also plot the estimated response curves π̂j(x) for j = 1, 2, 3.
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The dots on the plot abovecorrespond to the observed proportions. We note that
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our estimated response curves clearly follow these dots relatively closely, which
is reassuring. The largest gap between response curve and observed proportion
appears to occur at 250 concentration level for the class dead. This point might
be worth looking at more closely as a potential outlier.

(c) Now we implement a bayesian version of the model above. In particular, we use
the metropolis hastings algorithm for each binomial model. Candidate generation
was done from a multivariate normal using a modification of the hessian matrix
taken from the optim function as before. Priors were set to be nearly flat, greatly
dispersed normal priors so as to be as uninformative as possible, but still guar-
antee a proper posterior. Using this approach we obtain the following posterior
samples of the coefficients. As before, the blue line indicates the mean of the
samples, the green line indicates the MLE value from part (b) and the red lines
indicate 95 percent confidence regions.
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Using these posterior samples, we can generate point and interval estimates for
the response curves πj(x), j = 1, 2, 3. Those response curves are plotted below.
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We note that every observed proportion (in blue) is included in the confidence
region, except for the 250 level concentration, which we noted as being farthest
away from the estimated response curve earlier in this problem.
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